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Expressions are derived for a three-dimensional polar in the pressure ratio, 
deflexion angle space to represent conditions downstream of a detonation wave 
with given upstream conditions. An analysis of reflected waves is undertaken 
and the representation of three wave confluences in a three-dimensional hodo- 
graph space studied. These techniques are applied to experimental results avail- 
able for spin detonation in gaseous mixtures of acetylene-oxygen-argon and 
carbon monoxide-oxygen. Assumptions made in earlier papers concerning local 
extinction of combustion a t  the confluence point are not necessary in this 
picture. 

1. Introduction 
The shock polar with pressure ratio PIP, and deflexion angle (6) co-ordinates, 

has been very successful in the analysis of problems involving the confluence of 
shock waves at a point. A polar, similar to the shock polar, may be developed to 
represent a detonation wave, by including the heat of combustion q.  Thus, using 
the shock polar and the detonation polar, which is given by Shchelkin & Troshin 

the solution of a confluence involving both shock and detonation waves would be 
possible. For the few cases for which quantitative results are available upon such 
mixed confluences, the agreement between experiment and theory has not been 
as satisfactory as that obtained when only shock waves are present. 

Detonation polars were used by Shchelkin & Troshin (1964) to analyze the 
experimental results on spinning detonation obtained by Voitsekhovsky (1957). 
It was found, that if the pressure ratios and deflexions across the various waves 
were calculated, such as to satisfy the wave angles measured by Voitsekhovsky, 
then continuity of pressure and direction were not satisfied downstream of the 
confluence. In  these calculations the heat of combustion q was taken to be 
constant at  all points on the detonation polars. 

Using a varying value of q, which was derived from chemical equilibrium 
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calculations, Strehlow (1964) analyzed the results by White (1963) on reactive 
gas Ma.ch stems. Continuity conditions downstream of the confluence could only 
be satisfied by assuming that the detonation wave became a shock locally at  
the confluence point. Similarly, Edwards, Parry & Jones (1966) found that in 
analyzing their results on spin detonation, the polar for the reflected shock, polar 
11, figure 1, did not intersect the detonation polar 111. Following Strehlow, they 
assumed that the detonation wave must locally become a shock wave, giving the 
solution point as G. In the present work, it is suggested that such an assumption 
of local extinction of combustion, could be due to neglecting the three-dimen- 
sional aspects of the problem. 

FIGURE 1. Shock and detonation polars for spin detonation from 
Edwards, Parry & Jones (1966). 

Finally, in Macpherson (1968~) the results obtained by Schott (1965) on 
spinning detonation were studied using a two-dimensional polar in which 
allowance was made for a variation around the polar of both q and y1 (the down- 
stream value of the specific heat ratio). Although a solution was obtained, the 
result was not theoretically satisfying as the resultant wave arrangement did not 
appear to be generated by any physically reasonable mechanism. A second aolu- 
tion was also presented, assuming that a minimum entropy state was taken up 
by the dominant driving detonation wave. Although in the minimum entropy 
case the waves angles did not agree with the measured values, it was assumed 
that this could be due to three-dimensional effects. Thus a requirement appeared 
to exist for a, polar to represent three-dimensional shock and detonation waves. 
In the present work, the construction and properties of such a polar are examined 
together with a discussion of the techniques necessary for its use. This is followed 
by a description of the application of the technique to some spinning detonation 
results. 
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2. The three-dimensional detonation polar 
Derivation and properties 

The jump conditions across a three-dimensional wave in an inviscid, semi- 
perfect gas are: 

POUO = P1%, (1) 

pou:+po = PlU"lP1, ( 2 )  

uo.vi = U1.V( (i = 1,2) .  (4) 
Subscripts 0, 1 refer to upstream and downstream conditions respectively. Q ,  

the heat of combustion, is the change in C (h:(T) - C;,(T) T) across the wave 

where ho(T) is the standardized enthalpy at  temperature T, (7% is the standard- 
ized specific heat at  constant pressure, n is the number of i chemical species 
present, v,, v, are independent tangent vectors to the detonation.. 

A system of axes ( lo ,  l,, Z,), preferably right-handed orthogonal, must be 
defined for the above equations. The system could be chosen arbitrarily, with the 
result that the incident flow vector would have direction cosines (a ,  p, y )  and the 
deflected flow vector direction cosines (I, m, n). Such a selection would have 
advantages when considering reflected waves; the resultant polar, however, 
would not have any assured symmetry. A symmetrical polar could be obtained 
by choosing a = I,, without defining 1, and 1,. This latter system was selected, 
as the symmetry property appeared very useful and yet the system retained one 
degree of freedom. 

n 

i= l  

If the angles 6 and 4 are defined by the relations tan 6 = - m/l and 

tan4  = -n/l, 

where 6 lies in the (Zo, 1,)-plane and q5 lies in the (lo, 1,)-plane, a steady-state detona- 
tion polar surface for three-dimensional flow may be obtained from (1)-(4) as 

where q = &/a:, a being the speed of sound. As it does not appear that this rela- 
tion has been previously published, a few brief notes are given in appendix A 
both upon the derivation of the expression and related properties. 

Rejected waves 
Consider a three-dimensional confluence such as that of the three waves shown 
in figure 2 (a).  As a polar is constructed with the 1, axis parallel to the incoming 
flow, the axes 1; of polar I11 for the reflected wave ( r ) ,  are not parallel to the axes 
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FIGURE 2. Wave confluences. (a) Three shock confluence. ( b )  Cross flow three- 
dimensional shock waves. 
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li for polar I. Thus, the results obtained for polar I11 in the system 1; must be 
mapped by rotation as well as displacement for representation in the li of polar I. 
As the 1; axes passes one degree of freedom, a simplification of the rotation matrix 
may be obtained by choosing 1; to be parallel to the (Z,, I,)-plane. The resultant 
rotation matrix is given in appendix B. The mapping functions for tan S‘, tan @‘ 
from the I ;  axes to the l i  system become: 

tan 6 = (xo tan 6, +tan 6, tan 6’ - tan @ o  tan $’( 1 + xi)+)/A, 

tan @ = (xo tan @o + tan @o tan 6‘ +tan 6, tan @’( 1 + z:)*)/A, 

where ,4 = xo(l -xo tan a’), So, $o being the deflexions of the flow behind the 
incident wave, xo = tan2 6, + tan2 @o. 

As discussed in Macpherson (1968a), the deflagration waves can also be 
mapped by relation ( 5 ) .  Further, a relation for a Prandtl-Meyer wave from a 
swept corner may be readily obtained in three dimensions from the one-dimen- 
sional relations. 

One downstream continuity condition for a wave system as in figure 2 is the 
equivalence of pressure across shear discontinuities. There is also a restriction 
upon possible flow directions. If the vector p is defined by the line of intersection 
of the three wave segments, then the continuity requirement upon the flow 
directions ur, u, is that the plane formed by p . u, must contain the vector at. This 
condition may most readily be examined by considering the directions of p x u, 
and p x ut, which will be termed condition A .  The vector p is defined in terms of 
the normals in, t,, r,, to waves i, t ,  r respectively as i, x t, = i, x r, and this is 
termed condition B. Thus for each pressure ratio all waves systems represented 
by pairs of points on the two polars which satisfy conditions A and B are possible 
solutions. Thus, as in two-dimensional flow, there are multiple solutions and 
appeal must be made to  boundary conditions to determine the physically likely 
result in a particular study. 

Consider the wave system given in figure 2 ( b ) .  This represents a typical three 
wave confluence where the edge of the flow downstream of t and r are shown as 
DA,B,C, and DE,F,Q, respectively. Thus, for finite length straight waves a 
boundary must be provided to fill the plane G, DC,. As the plane Gr DC, contains 
p it appears difficult to terminate such a system with a smooth boundary unless 
DA,B,C, is parallel to DB,FrG, and the region CtDGr vanishes. This is when 
6, = S, and 4, = @, across a shear discontinuity between regions 1 and 2 .  Further, 
if the vector p curves then the region C,DG, will contain gas at  a different pres- 
sure to that downstream of r. This may force the system to become irregular. 
These considerations will be investigated in subsequent studies. However, as the 
flow in spin detonation is confined to a small region near the wall it appears 
reasonable to obtain a first approximation to the wave structure by assuming 
6, = 6, and @, = @,. 
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3. Application to spinning detonation results 

Experimental results 
Using heat gauges mounted in the detonation tube wall, Schott (1965) con- 

structed the wave configuration in figure 3 (a). The points represent the mean of 
five tests and it can be seen that although the scatter of points is generally small, 

Acetylene-oxygen-argon mixture 

180" 

150" 

120" 

90" 

60" 

30" 

-4 -2 0 2 
(em) 

FIGURE 3. Experimental results by Schott (1965) of spin detonation in an acetylene- 
oxygen-argon mixture. (a) Instantaneous axial and circumferential positions of waves 
dot-shock front, triangle-chemical reaction, square-detonation front. (b )  Inscriptions in 
smoked foils on tube walls. ( c )  Definitions of the angles a and p. (d) Inscriptions in smoked 
foil on tube end clear patches are defects on the film. 
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the point 1, 1' is particularly astray. A coating of soot placed on the end of the 
tube, figure 3 (d) (plate l), shows that the effects of the spinning head are restricted 
to an annular region between 0.65 R and the tube wall, R being the tube radius. 
The region from 0.73R to the wall is approximately of uniform width. The patterns 
are only quasi-stable, as shown in table 1 and the related figure 3 (c). Soot patterns 
on the tube walls, figure 3 (c), also suggested that the flow was quasi-stable; Schott 
described these records as 'In the smoothest single spin records tt is consistently 
about 49.5". The spin pattern is usually not uniform, however, and in a larger 
number of records a fluctuates between about 41" and 54". In  this fluctuating 
mode, the track travels a small distance at  the lower angle, curves smoothly to 
the higher one, and later bends abruptly to the lower one. Weak disturbances 

Transverse wave I, 

Tube axis 
FIGURE 3 ( c ) .  For legend see p. 456. 

propagating counter to the dominant helix connect these points of acceleration 
and deceleration of the circumferential motion. This fluctuation occurs periodic- 
ally at  between 0.60 and 0.67 revolutions. The length of the low-angle track is 
smaller than that of the high angle.' Thus, for this mixture, the application of 
steady flow conditions is questionable. As insufficient experimental data was 
available to choose which of the two modes applied to figure 3 (a) ,  average values 
of velocity and wave propagation angle were used here. 

Three-dimensional solutions 
In  the analysis below the effects of rotation have been assumed to be satisfied 

in the experimentally observed patterns. Alternatively, the model presented 
represents spin in a tube of infinite diameter. Further, it has been assumed that 
the results obtained exist right at the tube wall. 

In  order to define the different waves referred to in the results, the picture 
which has been built-up from the calculations, is shown in figure 4. The conven- 
tion has been adopted that wave boundaries which extend towards the interior 
of the tube have been shown as tapering curves. The global view of the complete 
system is shown in figure 4 (a ) ,  while figures 4 (b )  to 4 ( d )  give details of the various 
confluences with appropriate shading to improve definition. 
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Consider figure 4 (a )  ; if the shock at  0" is to be part of a continuous shock across 
the centre of the tube to 180", then the shock i, figure 4 ( b ) ,  must curve down to the 
wall from the tube interior near the confluence point at  0". Hence t must also 

Variation 

Shot to Over 1 Over 
Quantity Average shot cycle cycle Local 

D, axial velocity, impulse 1.336 f 0.03 f 0.07 0.14 - 
a, propagation angle 50.0" 5 0.5" f lo f 2" -t 5" 

,8, transverse wave 23" + 7" .. + 9" 
Angle - .~~ - _- 7" 

__ 8" 
- 

- 4" 

TABLE 1. Wam vcIocit,y and angles deduced from wave-speed photographs (Schott 1968) 

(a) 

FIGURE 4. Proposed wave structure of spinning detonation. 

curve from the tube interior, near the confluence point. Thus, the reflected shock 
k is formed extending into the tube at  the junction between i and t. The experi- 
mce obtained in the analysis of this three wave group suggests that only the 
two-dimensional solutions can be obtained, as all others fail to satisfy the re- 
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strictions upon wave angles at  the confluence point. However, it was not felt 
that a sufficiently detailed study had been made to establish this, although the 
results were suggestive of a general trend. Further study of such a confluence 
would require more extensive algebraic manipulation of the equations to reduce 
computation time for solutions. 

As supersonic flow must exist upstream of dt the wave i must be reflected at the 
tube wall to form the wave r .  The boundary conditions imposed on rare that the 

FIGURE 4 ( b ) - ( 4 .  For legend see facing page. 
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angle 19 made by the incident shock at  the wall must equal that of the reflected 
wave, to produce the line i, r in figure 4 ( b ) ,  and that the downstream flow behind 
r must be supersonic and parallel to the wall. As the I, axis in the study was chosen 
to lie along the radius, the latter condition was satisfied by q5 = 0. Thus the pro- 
cedure used to select r was to calculate the points where q5 = 0 at a variety of 
pressure ratios and then select the one which gave the same value of 19 for both 
the incident and reflected shocks. 

Wave Description 
i 
r 
t 
k 
kr 

kt 

dt 
d 

Curves from tube centre to meet wall at ir 
Refleeted wave at i r  to bring flow parallel to wall 
Curved detonation from tube centre to wall 
Triple wave at  intersection of i and t 
Reflected wave behind k at the intersection of k 

Reflected wave behind r at  the intersection of r 

Transverse spinning detonation 
Deflagration wave 

with r 

with k 

TABLE 2. Wave nomenclature 

When the wave k meets the wave r ,  a four wave confluence is most likely formed, 
figure 4(c). There are many possibilities for this system. The one shown is a four 
shock confluence with probably a Mach stem between k, kr and r ,  Ict. In  studying 
the four wave confluence it appeared that only a two-dimensional regular con- 
fluence is possible when the restriction of equal 6 and $ is applied. However, as 
the wave k shrinks to a point at  the wall, the possibility arises of involving the 
more general boundary conditions considered previously. This was not studied, 
but appeared to represent a likely solution, as the shearing flow would vanish 
at  the wall. From the confluence, the wave kr extends upwards to meet the vortex 
sheet from the i, t, k junction. As the flow is subsonic behind t in this region, the 
pressure pulses will be transmitted over the whole area. 

Finally, the wave ktwill join the transverse detonationdt and the shockir will be 
formed, figure 4 (d). This meets the vortex sheet along the sonic line in the vicinity 
of the wall. However, away from the wall, the position is probably not so certain 
and it has been drawn as not following the sonic line. 

No attempt has been made to study the region where the transverse wave dt 
meets the deflagration, due to the uncertainty concerning the four wave con- 
fluence. However, the two-dimensional solution is most likely fairly close. Again, 
once the upper region is known with certainty, the remainder can be readily 
found. 

Wave refraction 
As the incident shock extends into the interior of the tube, the tangential 

Mach number decreases and hence both the direction of the flow and the incident 
Mach number decreases. Thus the technique developed by Henderson (1968) for 
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shock-boundary-layer interaction may be extended to the present case. In  this 
technique, the boundary layer was replaced by thin inviscid layers of gas of 
slightly differing Mach numbers. The effects of viscous mixing between the 
streams were ignored. Thus the problem was reduced to one of shock wave 

'SO 

U 

(b) 
FIGURE 5. Wave confluences. ( a )  Shock refraction. ( b )  Shock reflexion. 

refraction. It was found that both types of regular refraction, that is, with re- 
flected shock or reflected expansion, could be obtained. In the present case, the 
flow may be divided into thin strips of varying Mach number and varying direc- 
tion, so that the polars for two slightly different Mach numbers are displaced 
along the axis, figure 5 (a) .  Thus again, either a reflected shock or expansion may 
occur. However, it was determined numerically, that in the range of pressure 
ratio of interest, the change in 6 due to upstream direction change, occurred 
more rapidly than the change in 6 due to decreasing Mach number. Hence, only 
a reflected expansion is possible. 
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The refraction of the reflected shock r is far more difficult. Consider the case of 
of a two-dimensional shock, with upstream Mach number Mi refracted by a 
negative boundary layer of changing upstream direction, figure 5 (b ) .  The incident 
shock i, has a reflected expansion el and a transmitted shock i, at the interface 
SIX,. The reflected shock r is produced at the wall. Similarly i,, e2, i, form a 

FIGURE 6. Variation with pressure ratio of the wave angle 6, at the tubo wall of the 
reflected wave. Curve 1 PJP, = PL - 4.7. 

refraction system at the interface S2S,. Now when el meets the interface S,, each 
wave of the expansion fan will be refracted and a transmitted expansion with a 
reflected compression wave will be obtained, following Guderley (1962). Again 
the compression waves will be refracted a t  the interface 8,. Hence to determine 
the Mach number and direction upstream of r2 is very lengthy. The assumption 
that el is an expansion shock would reduce the computation considerably. How- 
ever, even with this approximation the cost was beyond the research resources 
available. Thus, the assumption was made, and it was realized that it was un- 
likely to be realistic, that all the streams upstream of reflected shock 'I' were 
parallel to the flow between i, and r,. The Mach number was that behind the 
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expansion fans 8. Under these conditions a reflected expansion e is obtained 
during the refraction of r,  figure 5. 

Incident shock selections 
If the incident shock-wave angle is fixed at 19 = + 35" and the incident shock 

pressure ratio PJP, increased from Pl/Po = 1.0 it is found that for Pl/Po < PL 
only one value of the pressure ratio P2/Pl across the reflected shock gave 

10 14 

Section point 0 2  1 4 3 \ j  

I 

Section A1 

FIGURE 7. Hodograph mapping of refraction of i. 

8, = + 35". The curve of the variation of P2/Pl with 8, for PJP, = PL is shown as 
curve 1 in figure 6. It can be seen that two values (al, a2) of P2iPl are possible. 
However, with increasing PJP, the solutions move together till at  PJP, = Pfi a 
double point a1 = a2 is obtained. This is curve 2 in figure 6. For PJP, > Pp no 
solutions are possible. 
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Further, although the mean line for i drawn by Schott, makes 35" with the 
flow, it can be seen from figure 3(a)  that the three points near the confluence 
actually lie on the circumference of the tube, making an angle of 40" with the 
flow. Away from the confluence the points appear to sweep up quite rapidly. 

PIP0 
120.7 I 

-40 -30 --20 -10 0 10 20 30 40 

A#- 

Section A, 

10 

-40 -30 -20 '-10.. 

FIGURE 

Thus, a selection principle must be invoked. As for the two-dimensional problem, 
Macpherson (1968a),  the entropy change As across the transverse detonation dt 
was used to select the incident and reflected waves. In  this case it is the total 
entropy change across the three-dimensional wave which must be considered. 
It was found that P,/P, = Pp and 0, = 40" (referred to below as the minimum wall 
entropy solution) gave the minimum entropy a t  the wall. The use of the 40" 
solution was attractive as it provided the possibility of double headed spin 
being developed in the general form suggested by Soloukhin (1966). However, 
as will be presented elsewhere Macpherson (1968b), this does not produce a 
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physically likely result. The mapping of the wave i in the hodograph plane for 
this case is shown in figure 7 as the segment from a, on polar I to a2 on polar 11. 
The wave mappings oft, k and r are shown in figure 8, as the segments p, to p2 for 
k, t and a, to a2 for r .  Thus, it was decided to develop an a, solution with 0 = 35". 
The results of this analysis are given below. 

Development of an a, solution 
As some results had already been produced for an incident shock i with 

pressure ratio 5.88 prior to the realization of the possible importance of entropy 
change across dt, this solution was completed. In this case, the waves k and t were 
only obtained at a few points, as the behaviour of these waves appeared from the 
previous results to be quite regular. Further, the calculations were terminated 
shortly after the transverse detonation dt ceased to exist. 

PIP0 

-400-30-20-10 0 

t 

k 

-8 
20 30 40 

FIGURE 9. Hodograph mapping of i, r, t ,  k and two-dimensional solution for let, kr,  dt  
(a1 solution). 

30 Fluid Mech. 35 
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Figure 9 shows the mapping of the wave i as D,  on polar I, the reflected wave 
1' as D, on polar I11 and k ,  t at ,8, as the intersection of polars I and 111. No attempt 
has been made to analyze the four waves confluence at  k, v, kt,  kv, figure 4(c ) .  
However, a two-dimensional solution has been constructed for the wave kt at 
the wall. The solution y, is obtained on polar IV  constructed at  D, and the wave 
ir is given by y 2  on polar V constructed at D,. Thus, y, should be close to dt on 
polar VI.  This may now be compared with the experimental measurements of 
p1 the transverse wave angle in table 1.  The wave angle 8 of dt with respect to the 
flow direction S = 13.5" behind r should be 86.5", whereas the two-dimensional 
solution at yz gives the value of 8 = 80.8". However, the value of 8 = 80.8" 
would only apply right at the confluence point, whereas p1 is the most likely 
average value, probably close to J ,  where 8 = 61.8". It was found that the 
transverse wave dt could exist till the Mach number on the wave i was reduced 
to 5.6. The polars at  MI = 5.6 were constructed where polar I contains i, polar I1 
contains r and polar I11 represents dt.  It was found that the ChapmanJouguet 
points coincide a t  the base of the polar 111 and all points on the polar are thermo- 
dynamically possible. 

Table 3, a copy of which can be obtained from the editor, contains the results 
of the refraction, where the deflexions are given in the co-ordinates of the wave 
considered, So, #o and the co-ordinates of the shock i at the wall Srl, &. The wave 
angles eTt, wTt are given in terms of a co-ordinate system with axis I ,  a,long the 
radius and I ,  parallel to the tube genetarix. The third angle is the intersection of 
the wave with the (Z1, Z,)-plane. The temperature T is downstream of the wave. 
The values for S,, #1 are plotted in figure 7 as the segment pl, ,8, for i and in 
figure 8 as rl 7, and y, y 2  for the waves t ,  k and r respectively. The results follow 
the minimum wall entropy solution very closely except for the reflected wave r. 
In  fact, this wave barely alters and a t  y, has a pressure ratio very close to that 
of a normal Ml = 4.1 2 shock. The most significant difference is in the temperature 
downstream of the wave r .  In  the minimum wall entropy case, a temperature 
about 1600 "K was found downstream of r,  and hence combustion is likely. In  
this case combustion is very unlikely to occur, as the approximate minimum for 
combustion from the work by Kistiakowsky (Glass, Kistiakowsky & Michael 
1965) is 1400 'I<. The temperature gradient between the flow downstream of k 
and behind t is, however, in the temperature region where combustion will occur. 

Curbon monoxide-oxygen 
Experimental results were obtained by Mitrofanov, Subbotin & Topchian (1963) 
on spin detonation in a mixture of 2CO + 0, + 3 % H,. The tube was 27 mm 
diameter, an initial pressure of 0.1 atm, axial velocity 1700 m/sec and propaga- 
tion angle (4  n- - a )  = 34.5". The angle a is the angle between the flow direction 
relative to the spinning head and the tube genetrix. 

The axial Mach number was calculated as 4.82 and the helical Mach number as 
6.8. The diagrams in the original paper were not available and figure 3 shows the 
results as given by Oppenheim (1965). The pressure gauges used were polarized 
barium titanate, calibrated by shock waves of known strength. The author has 
not used these gauges so that the following comments could be influenced by a 
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lack of knowledge of the characteristics of the gauges. However, Bernstein (1961) 
found that with use, the polarization decreased and the gauges became inaccurate. 
This particularly occurred when the gauges were exposed to elevated tempera- 
tures. 

As was shown previously (Macpherson 1 9 6 8 ~ )  the mass fraction of H, present 
is very important in the evaluation of q. Thus, the quantity of water vapour 
present is an important factor. In  the report upon these experiments, neither the 
method of preparation nor the technique used to dry the gaseous mixture are 
given. Thus it has been assumed that the mixture is perfectly dry. Upstream 
temperatures have not been given and have been assumed as 300 OK. Both these 
assumptions could have an influence upon the results. Further, the axial velocity 
and helical angle were not determined at  the same time as the experiments, and 
hence the possibility of different moisture contents being present occurs. Finally, 
the velocity given suggests that the value has been taken to the nearest hundred 
m/sec. This is reasonable as Schott found a variation of 70 mlsec over the cycle. 
However, the variation in this case has not been given, nor is it indicated whether 
the average lies above or below 1700 m/sec. As will be seen, this is very important. 
The results by Mitrofanov et al. (1963) are given in figure 10 (plate 3). 

Numerical calculations 
As both the angle of i and the pressure ratio across i, r were known, the point 

D,, figure 11, could be readily found using similar techniques as described 
previously. It was found that this required the a1 solution. Thus the waves 
k, t at the wall were found and mapped as pl, a point with q5 = 0. Again, the q5 = 0 
solution was constructed for at. It was found that the intersection between polar 
V for ir and polar VI  for dt occurred at  a pressure ratio in excess of 200. This 
result was obviously not observed in the experiment. However, the Chapman- 
Jouguet pressure ratio on polar V I  is 125 which is fairly close to that observed 
in frame 6. 

When the refraction of i was considered, it was found that the axial Mach 
number of 4-82 produced a detonation wave. Thus, combustion would be expected 
to extend across the whole tube, which was not in accord with experiment. As 
the axial velocity did not appear to be known accurately, it was decided, for the 
purpose of calculating the change in direction of the incident flow across the 
tube, to assume an axial velocity of 1600 mlsec or M = 4.5. This was more in 
accord with the results of acetylene. An examination of the results obtained by 
Bone, Fraser & Wheeler (1936) indicates that a similar situation for a moist 
CO, O,, H, at  atmospheric pressure exists. This suggests that some factor has 
been ignored in these calculations. One possibility is that the temperature at  the 
ChapmanJouguet point does not cause combustion as discussed in Macpherson 
( 1 9 6 8 ~ ) .  However, in neither case is the error large, nor are the axial velocity and 
upstream conditions stated accurately. 

Table 4, a copy of which can be obtained from the editor, shows the results of 
the application of the numerical techniques previously described. The hodograph 
mapping of i is shown in a similar fashion as previously in figure 12. The wall 
position is indicated by a1 and the final value at  Ml = 5.1 as cq. The refraction of 

30-2 
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i was terminated at  this value, as the assumption made for the axial Mach num- 
ber was beginning to play a dominant role. Figure 13 shows the mapping of k, t 
from p1 to /Iz and of r from a1 to az. In  this case the position of the final shock 

PIP0 

-50 -40-30 -20 -10 0 

FIGURE 11. Hodograph mapping of waves i, r ,  k ,  t and two-dimensional solution for 
kt, kr, dt. 

polars have been indicated by the value of 6, for the incident shock i. It was found 
that dt could not exist for an incident Mach number much less than 5-6 and the 
corresponding detonation polar is shown in figure 13 as polar III. The pressure 
ratio across a normal M = 4.82 shock is N 28.5 so that points p2 and a2 are both 
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well placed to join with such a wave at the centre core of the flow. The value of 
q5 = 5.5' for k ,  t is well within the expected error. The whole result in this case is 
very similar to that obtained for the solution in the acetylene mixture. 

I 

-25 -20 -15 -10 -5 0 5 10 15 20 

FIGURE 12. Hodograph mapping of refraction of i. 

Discussion of experimental results 
The shock preceding Chapman-Jouguet detonations has P/Po = 26.9 and the 

C J  detonation as PIP,, N 15.0. Thus, the present calculations would suggest 
that frame 3 was close to the Chapman-Jouguet point. If this is true then frame 4 
should contain the deflagration. It is rather disturbing that a constant pressure 
plateau is not found between the shock and the Chapman-Jouguet deflagration 
pressure ratio of 10. This suggests both that a constant chemical composition 
region does not exist and that the representation of the deflagration as a gas 
discontinuity is rather poor. 
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The interpretation of frame 5,  that the shock is due to the confluence of the 
deflagration and the transverse detonation, does not accord with the present 
calculations. From the analysis of the acetylene mixture, a pressure ratio across 

PIP0 

-40’ 
FIGURE 13. Hodograph mapping of refraction of k ,  t ,  T .  

the shock of about 50 would be expected,? whereas the value obtained is over 75. 
With the present model, this result is not explained, as the lower confluence was 
only studied in two dimensions. It was suggested above that neither the trans- 

t Due to the polars for the two mixtures being approximately the same, the C,H, remilts 
should give a guide as to the expected values for CO. 
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verse detonation nor the deflagration may be normal to the wall; thus the other 
waves at  the confluence would have reflected shocks at  the wall. This could 
increase the pressure ratio. 

It appears reasonable that frames 6, 7 and 8 can be interpreted as in figure 4. 
These form the basis for the present investigation as the pressure ratio across i 
and r is obtained as N 19.4. Considerable effort was spent in attempting to fit an 
alternative interpretation to these results. However, with the given pressure 
ratios and the time interval between the two waves, it was found that an alterna- 
tive wave confluence could not be found. 

It seems likely that frame 9 agrees with the present work. However, frames 10 
and 11 are not considered to be reliable. This particularly applies to frame 11, 
where a pressure rise of 50 is obtained instantaneously. In  frames 6-8, a constant 
rise time of about 1 psec is seen for all the waves. Thus in 11, a very strong shock 
with pressure ratio in excess of 200 would be needed to cause such a rise. It is 
suggested that the effect of elevated temperatures may have affected the results. 
Due to irregular pressure changes frame 12 appears too confused for interpreta- 
tion with the present results. 

4. Errors in the numerical model 
Before discussing the results generally, a few comments upon the assumptions 

made in the present study are presented. 
The most important assumption is the neglect of rotational effects and par- 

ticularly the failure to consider the moment of momentum relation. This is 
simply the cross-product of the radius vector and the momentum equation. As 
the momentum equation is satisfied across the shocks, locally the moment of 
momentum will be satisfied. A numerical integration would be required to 
examine whether the global equation was also satisfied. 

Centrifugal and other rotational problems, particularly between waves i and r 
could only be examined by numerical solution of the flow equations in three 
dimensions and including conservation of angular momentum. This presents a 
formidable task, particularly as previous experience suggests this would be an 
extremely costly venture. As stated previously, it seems reasonable to assume 
that these conditions have been satisfied in the experimentally observed model. 
However, the flow between waves i and r is only very approximately defined 
without a complete solution. The fact that the spin rate is not greatly affected 
by either tube diameter or shape, suggests that the rotational effects may not be 
dominant in the solution. 

Another important assumption is that the inviscid flow shock waves exist right 
to the wall. It can be shown by even a crude dimensionless analysis based upon 
Lighthill (1956), that the curvature of the shock at  the shock tube wall is of the 
order of a few mean free paths. Thus the leading waves i, twill exist for all prac- 
tical purposes at the wall. The remaining waves, however, will encounter a nega- 
tive boundary layer set up by i, t .  The experimental data upon such boundary- 
layer growth appears fairly sparse, although such experimental results as 
Gooderum (1958) tend toindicatethat the boundary layer will be less than 0-05 in. 
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at the tip of the transverse wave. Nevertheless, this thickness will have some effect 
upon the pressure, temperatures and wave position. 

Viscous effects will also be important where a number of shocks meet at  a 
point. When a wave is a detonation and meets at  a confluence, the effects of 
viscosity are unknown. Heat transfer effects will be very important between the 
flow behind t and that behind k; in fact, at  the boundary, it would be very un- 
usual if locally combustion did not occur due to the large temperature gradient. 

Finally, it would appear from the pressure profiles obtained by Mitrofanov 
et al. that a constant composition region does not exist behind i, r and that the 
deflagration cannot be well represented by a gas discontinuity. The main hope 
in this case is that, although the local effects may be important, the global sig- 
nificance could be slight. Thus, generally, the present model is as firmly based as 
knowledge of experimental results and computer limitations will permit. 

5. Discussion and significance of numerical results 
For refraction of a shock wave by a boundary layer, Henderson (1968) showed 

that the system becomes irregular near the wall and a lambda foot is formed. 
Thus, at the outset of the present study, it was thought that an irregular wave 
pattern would be formed after the refraction had proceeded for some distance 
from the wall. One possibility would be when the polar for wave k failed to 
intersect the polar for t. As has been shown, this does not occur till shortly before 
t vanishes and is thus unlikely to have significant influence upon wave structure. 
The wave system is remarkable in the regularity of the principle waves i, r ,  t and 
k, for all conditions considered. The only significant point is that the wave r goes 
to the sonic point in the minimum wall entropy case for C,H,. However, neither 
of the other two cases show this tendency. In addition, as the CO + 0, results 
have defined the waves i, r at the wall uniquely, it  would be expected that these 
results would be more significant than C,H, predictions. Thus the minimum wall 
entropy refraction of r tending to the sonic point may not be the physically 
observed result. 

If i is considered to be refracted to the centre of the tube, it almost certainly 
would form an irregular pattern as the upstream flow direction would change 
very rapidly to reach 8. at the centre. The refraction of i much past the point 
where all detonation becomes impossible appears meaningless, as the driving- 
piston will be absent. The disturbances which do exist past this point will be 
rapidly dissipated by viscous forces. 

Hence the view of a smoothly curving wave i meeting a flat centre section 
emerges. If  the tangential velocity component varied linearly from its value at 
the wall to zero at the centre and the wave angle A,, plotted against tube radius, 
curve 1, figure 14(a) is obtained for the minimum wall entropy C,H, case. Also 
shown on this figure, as curve 2, is the highest point on the wayes i, t, which would 
represent the centre section of the shock. As curve 1 does not intersect 2, a linear 
velocity distribution was found which could allow the wave i to intersect curve 2. 
This is designated curve 3. It can be seen that the wave i extends to 0.63R. 
Using the same velocity distribution which allowed curves 2 and 3 to intersect, 
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the values of A,, for the a1 solution in C,H, were plotted in figure 14 ( b ) .  In this case, 
the wave does not reach curve 2 as the wave was not refracted till all detonation 
became impossible. However, the transverse detonation ceased at  0.73R. These 
values may be compared with the results obtained from the soot patterns on 
the end of the tube shown in figure 3 ( d ) .  There the constant width section 
extended to 0.7R and the complete trace vanished at 0-65R. Thus the interpreta- 
tion may be made that the constant width section represents the region where a 
transverse detonation exists, and the tapered section where only the wave t is 
present. 

No such comparison can be made with the results by Mitrofanov et al., as the 
position of the waves i, t ,  depends upon the interpretation of separate pressure 
readings. Thus the height of the centre plateau is not defined. However, it can 

I 

(6) q 
FIGURE 14. Slope of the incident shock i along the tube radius from the tube wall. 

be seen from a comparison between the values of A,, for C,H, and CO mixtures, 
that a similar result may occur. However, further experimental results are 
required upon this aspect. 

It appears likely that the a, solution will generally be the most likely one to be 
obtained in an experiment. There are a number of reasons for this conclusion. The 
fact that this solution was defined by the results in the CO + 0, mixture is sig- 
nificant, although this could be restricted to the particular mixture. However, 
the temperature behind the reflected wave r became very high when the a, solu- 
tion was considered in the acetylene mixture. For this mixture, recent work by 
Homer & Kistiakowsky (1967), suggests that at  1800 O K  considerable chemicaJ 
reaction occurs. Further, in the CO + 0, mixture the temperature downstream of 
r is kept low by considering the a, solution, although even at these temperatures 
the experimental results suggest a continuous chemical change. Again, it  has 
been found from studies upon t.he confluence of shock waves that, if the solution 
is multi-valued, then the weakest solution will occur in the absence of downstream 
boundary conditions. This suggests the selection of the a1 solution, as a smaller 
entropy change occurs across r for the a1 solution. Finally, the minimum entropy 
change concept probably required the solution. Unfortunately, the calculations 
performed were insufficient to either confirm or refute this suggested selection 
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principle. In  fact the whole flow would have to be solved for a number of different 
conditions to obtain sufficient data. 

Consider conditions as the waves meet the centre shock. Provided the a1 
solution is chosen t ,  k and r have pressure ratios of the same order as the normal 
shock with the axial Mach number. Further, q5 N 0 for these waves, which is all 
that is necessary, as differences in 6 between a wave and the normal shock core 
merely produce a shear layer. Small differences from the centre conditions could 
be adjusted by a cylindrical shock. The existence of such a shock is also suggested 
by the fact that there is no trace in the flame pictures of the combustion separat- 
ing into a deflagration wave behind the wave dt. The transverse detonation is 
clean cut and as pointed out by Schott, in the acetylene mixture, even the differ- 
ence in wave width due to the rotating head moving either in the same direction 
as or opposite to the film direction can be seen. If the wave dt was not terminated 
suddenly, such as by a shock, a separation of the deflagration would be expected. 

A possibly related feature is that between the waves i and dt there exists a 
supersonic rotating flow. Now the characteristics of such a flow could coalesce 
into a cylindrical shock. It is possible that this shock, if it exists, could be the 
same as the terminating shock discussed above. In  such a case this wave could be 
one of the most important in the confluence. 

If the centre shock is an almost plane normal wave as suggested here, then all 
downstream disturbance may propagate up the centre core to influence the whole 
wave system. Thus disturbances in the subsonic patch behind t could move 
along the radius and influence all waves through the core. Hence the mode of 
operation of the tuned oscillator referred to in the literature is apparent. This 
would tend to support the theory by Fay (1952) of acoustic vibration in the tube. 
However, it  appears that many other influences affect the confluences as well. 

As discussed in Macpherson ( 1 9 6 8 ~ )  an explanation of the soot patterns ob- 
tained upon the tube walls requires a much better knowledge than is at  present 
available, of the effects of different wave processes upon the soot. However, one 
feature that appears to be often overlooked is that a soot pattern is not a snap- 
shot but contains traces due to all disturbances which pass the given point. Thus 
the fine lines found in some soot patterns of spin detonation need not arise from 
the region between r and the deflagration. The regularity of these waves suggest 
Mach lines. It was thought that as the waves i, r virtually represent a Mach re- 
flexion, then the characteristics may be inscribed by this wave sweeping across 
the soot. However, the angles obtained would be 32" and 80" whereas the 
measured values were 20" and 75". For these angles to be produced by character- 
istics, the flow Mach number would be about 2.2. Such a value is only likely to be 
found behind the shock formed by the confluence of dt and the deflagration d .  

The two different modes found from the soot track, figure 3, have a number of 
possible explanations. The smooth change at  one extreme suggests that in some 
part of the wave structure, the deflagration which forms part of a detonation slow- 
ly moves away from the shock. The wave structure is then altered so tha t  a wave 
that was previously a shock has an increased temperature downstream and, 
after a short delay, it explosively forms a detonation giving a sudden change in 
wave structure. Such an event could occur at waves k, kr,  ir ,  E t  when, if one of 
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these became a detonation, the incident wave angle of i could change from 8 = 35" 
to 8 = 40" say. Alternatively, the change could cause r to move from the a1 to 
the a, solution. 

One of the most disturbing features of the present calculations is that the 
analysis indicates that detonation would occur across the whole tube for the 
CO mixture, whereas for the C,H, mixture there is a reasonable margin between 
the minimum detonation Mach number and the axial Mach number. From 
flame photographs, such as those by Bone, the striations are clearly defined and 
hence combustion does not occur in the centre. The only suggestion which can be 
put forward is that the temperature achieved is insufficient to cause ignition 
and commence the chemical reaction. This is not very satisfactory and it appears 
that further research is required upon this point. 

Finally, although the wave dt has not been studiedin detail, the indications are 
that it is not a two-dimensional wave normal to the wall. This is due not only to 
the angle at  the Chapman-Jouguet point being considerably different from the 
observed value, but it does not appear that 8 = 0 for kt. Further, the pressure 
ratio obtained in the case of CO + 0, is very much higher than the experimentally 
observed value. This would be modified if a three-dimensional solution was 
considered. 

6. Concluding remarks 
A three-dimensional picture has been constructed for some of the main waves 

in the spinning mode of detonation. Possible shapes of some experimentally 
observed waves have been predicted. In  addition, a number of waves, which have 
not been observed experimentally, have been predicted. It seems profitable then 
to list possible avenues for further experimental and theoretical studies, which 
the present investigation has revealed. 

A most important experiment would be the determination of whether the 
wave r ,  the reflexion of the incident shock i at the wall exists. This would appear 
to present a fairly difficult exercise using conventional Schlieren techniques. 
The pressure ratios and the inclinations of the wave i, r should also be determined 
for a number of different gases to confirm that the a1 solution is always obtained. 
At the same time, the change of mode in observed soot patterns may be revealed. 

A determination of the distance which the transverse detonation dt extends 
across the tube is needed. It would seem that this could be readily obtained by 
using a series of annular masks a t  different radii on the end of the tube in a similar 
fashion to that used by Campbell & Woodhead (1928). Further, the presumed 
existence of a flat normal shock across the centre of the tube requires investiga- 
tion. This appears to provide a considerable problem experimentally. A t  the 
same time, it may be possible to determine if the centre shock rotates as a whole, 
although this seems unlikely. The suggested cylindrical shock at  the junction of 
the flat shock and the incident shock i may be detected, although this could be 
very difficult. 

Experimentally, it appears unlikely that the four wave confluence k, kr, kt, r 
can be examined, but a theoretical study would be very useful. Considerable 
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effort would be required in such an analysis, as a preliminary examination of the 
necessary restrictions of the continuity of the deflexion angles at  the junction is 
needed. However, this type of shock confluence has applications in other fields; 
for example, at  the raked tip of a supersonic aerofoil in three-dimensional flow. 

Further theoretical work is necessary on the nature of the lower confluence 
between the transverse detonationdt and the deflagration d. However, no progress 
can be made here, until the four wave confluence mentioned above is solved. It 
seems unlikely that both dt and d will be normal to the wdl. 

An improved method for calculating the refraction of the reflected wave r is 
necessary for theoretical studies both in the present field and for shock-boundary- 
layer interactions, Henderson (1968). Finally, the possible focusing of the charac- 
teristics of supersonic rotating flow in the region id could produce a shock wave. 
Were this to occur, it could provide a boundary condition upon the radial 
extend of the spinning detonation. 

Appendix A. Derivation of the detonation polar 

the relations in (1) both the Hugoniot relation 
Consider a shock wave with angles 8 and w as shown in figure 15. Manipulating 

Po YO+1 %Yo -+-+7 
P1 Y o - 1  a0 P1/Po = - 

Yl+lPO 1 _____ 
Y-lP, 

and the Rayleigh line expression 
PIP, - 1 

1 - POlPl 
yoMi.n = 

may be obtained. With n the normal to the shock, and direction cosines 
tan 8 tan w/x, 

and tanolx, x = [tanZw+ tan28(1+ tan2w)lj 
combining the relations yields 

tan w/x, 

Yo4 
PlPO 1 

= D. (A 3) 1 1 2 Y1-1 7 0 - 1  
1+--+- tan28 tanzw = 2YoMo 

Y1- 1 p o  
The direction cosines of the flow vector downstream of the shock (figure 16) are 

-1 tan S tan # 
~- ___ 

where x2 = tan2 Q + tanz 4. Using continuity of mass across the shock it may be 
shown & -  1 +tan 8 tan 6 - 

t ans  tan# '  
tan 8 tan w 

P1 I---- 

From continuity of tangential components of velocity 

(A 5 )  tan 8 tan S = tan w tan 9. 
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Equations (A 3) and (A 5) give 
tan2 O$ + tan2 S 
(D-l)tan2S ' 

tan2B = -- 

Combining (A l), (A 4), (A 5) and (A 6) the polar expression may be 
after considerable manipulation. 

c 

Incident 
flow' 

/ 

/ 

D 

(A 6 )  

obtained 

FIGURE 15. Three-dimensional plane detonation wave. 

atan$ 
\ 

l2 

FIGURE 16. Streamline directions behind three-dimensional wave. 

In  obtaining an expression for the Mach number downstream of the detona- 
tion, it was found convenient to show that in the expression for MI, 6 and q5 only 
occurred in the form tan2S+tan2$ and hence was constant around the polar 
at a given pressure ratio. It may then be shown that 

In using the expression for the detonation wave angle 8, (A 6), care must be 
taken to assign to tan 0 the sign of 6. Once this is done o from (A 6) will have the 
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correct sign. The relations for the normal to the detonation wave are correct in the 
first quadrant where 8 and w are positive. However, in other quadrants the signs 
are incorrect and this led the author into many difficulties in a computer program. 
The requirements are: (i) tan 8 tan w/x must always be positive to ensure that the 
wave has the flow approaching from the positive x direction; (ii) tan w / x  has the 
sign of 6 and tan 8/x has the sign of $. 

Appendix B. Rotation matrices for reflected polars 

incident shock given in appendix A is 
The rotation matrix for the direction cosines of the flow downstream of the 

-tan tan -tan 
~ ~ ___ 

I--tan/ (1+x2)9 (1+x2)) t a n < *  $1 
(1 +22)$  x(1 +z ) 

The application of this gives the direction cosines 1, m, n of the vector formed 
by tan 8, and tan $,. Hence from 

I=- - 1  m=- tan 6, n=- tan $r 

( 1  +xrp7 (l+xr“)*’ (1 + x y  
where x: = tan2$,+ tar?&,, the relations (5) are obtained. 

The same rotation matrix applied to  the normal to the detonation wave gives 

tan 8, = ~~ 

x( 1 tan 8’ tan w’J + x tan w’6/16/) 
S / I S ~  tan 6, tan w‘ - xltan 8’ tan w’I tan 6, -tan 4, tan @ ( I +  xz)+j/1$( 

x( ltan 8’ tan 0’1 + x tan w’S/ lSl )  
6/lSl tan 9, tan o’ +$/I$\ tan 8‘ tan So(l + “2); - x tan $,/tan 8’ tan w’I ’ 

-___ 

__ ~ tan@ = . - ‘ 

where vertical bars indicate absolute values. 
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FIGURE 3 ( b ) .  For legend see p. 456. 
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Plate 1 

(Euciny p .  480) 
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FIGURE 3 ( d ) .  For legend see p. 456. 
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FIGURE 10. Pressure profiles of a spinning detonation and their consequence according to 
Mitrofanov, Snbbotin & Topchian (1963). The experiments were performed with the use 
of a 2 C 0  + 0, + 3 yo H, mixture contained in a tube 27 mm in diameter at an initial 
pressure po = 0.1 atm. Each division of vertical scale corresponds to 25p0, while the 
horizontal spacing is in 5 psec intervals. 
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